Paul Rosen

paul.rosen@utah.edu @paulrosenphd https://cspaul.com

Visualization for Data Science DS-4630 / CS-5630 / CS-6630

FILTERING, AGGREGATION, & STATS

OF UTAH

Reducing Items and Attributes

 \odot Filter

 \odot Aggregate

 \rightarrow Items

 \rightarrow Attributes

why reduce?

• Too many data items and/or too many attributes to focus on what is important in the data

filter

- elements are eliminated to support dynamic queries
	- coupling between encoding and interaction so that user can immediately see the results of an action

 \rightarrow Attributes

ITEM FILTERING

Ahlberg 1994

not be placed.

By JEREMY WHITE | Send Feedback

Source: New York City Department of Health and Mental Hygiene

ATTRIBUTE FILTERING

Controlling filtering

- Driven by 2 approaches
	- Widget-based filtering

• Visualization-based filtering

All cuisines

Controlling Filtering: scented widgets

- information scent: user gets sense of data
- GOAL: lower the cost of information forging through better cues

• Willett 2007

Controlling Filtering: interactive legends

- controls combining the visual representation of static legends with interaction mechanisms of widgets
- **define and control visual display together**

Riche 2010

aggregate

• a group of elements is represented by a new derived element that stands in for the entire group

 \rightarrow Attributes

Numerous ways to reduce…

• statistics, topology, machine learning, etc.

Problem #1: Aggregate Items

• We have too many data points to show

Histograms

- Generally referring to a bar chartbased visualization that allows evaluating distribution of values.
- Really, histograms capture a distribution of data

Categorical data

• Simply count occurrences of each type and visualize

Continuous Data Histograms

- Given: $X = \{x_0, ..., x_n\}$
- Select: k bins
- bin_i=k $*(x_i min X) / (max X min X)$

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- bin_i = floor(k * (x_i min X) / (max X min X))

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- bin_i = floor(3 * (x_i 1) / (4 1))

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- 1 -> floor($3 * (1 1) / (4 1)$) = Bin 0

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- 2.5 -> floor($3 * (2.5 1) / (4 1)$) = Bin 1

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- 3 -> floor($3 * (3 1) / (4 1)$) = Bin 2

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- 4 -> floor($3 * (4 1) / (4 1)$) = Bin 3?

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3
- 4 -> floor($3 * (4 1) / (4 1)$) = Bin 2

- $X = \{1, 2.5, 3, 4\}$
- \bullet k = 3

Conditional Histograms

Categorical data

Mosaic Plots

Ordinal data

 $\begin{array}{c} -2 \\ -1 \\ 0 \\ 1 \end{array}$

 $\sqrt{2}$

 θ

Ordinal data

Arsenic in well water

spatial aggregation

- modifiable areal unit problem
	- in cartography, changing the boundaries of the regions used to analyze data can yield dramatically different results

spatial aggregation: Congressional Districts

Histogram Challenges: Selecting Resolution

Mean (Average) ⁼ 27 Standard Deviation ⁼ 6

27.5

Histogram Challenges: Selecting Resolution

Statistical Modeling

Summary Statistics – mean

Definition: 3.1 Mean

Assume we have a dataset $\{x\}$ of N data items, x_1, \ldots, x_N . Their mean is $\lambda = \mathbf{M}$

mean
$$
(\{x\}) = \frac{1}{N} \sum_{i=1}^{N} x_i
$$
.

- The average
- The best estimate of the value of a new data point in the absence of any other information about it

Summary statistics - Standard deviation

Definition: 3.2 Standard deviation

Assume we have a dataset $\{x\}$ of N data items, x_1, \ldots, x_N . The standard deviation of this dataset is is:

$$
std(x_i) = \sqrt{\frac{1}{N} \sum_{i=1}^{i=N} (x_i - \text{mean}(\{x\}))^2} = \sqrt{\text{mean}(\{(x_i -
$$

- Think of this as a scale
- Average distance from mean

mean $({x})^2$.

Standard Score (aka z score)

Definition: 3.8 Standard coordinates

Assume we have a dataset $\{x\}$ of N data items, x_1, \ldots, x_N . We represent these data items in standard coordinates by computing

$$
\hat{x}_i = \frac{(x_i - \text{mean}(\{x\}))}{\text{std}(x)}.
$$

We write $\{\hat{x}\}$ for a dataset that happens to be in standard coordinates.

• Number of standard deviations a point is away from mean

Normal Distribution

An Example: Statistical Distribution

An Example: Comparing Histogram & Distribution

37.5

32.5

An Example: Comparing Histogram & Distribution

Maximum

Boxplot

 \sum

st Quartile

16 18 20 22 24 26 28 30 32 34 36

 \mathcal{L}

nd Quartile

 \mathfrak{Z}

_{rd} Quartile

 \mathbf{p}'

th Quartile

Upper Quartile

Median

Lower Quartile

Minimum

Potter et al., 2010

Boxplots

Potter et al., 2010

Boxplots

Given a data set $\{x_i\}_{i=1}^N$, we define the following quantities: $\mu_k \simeq \frac{1}{N} \sum_{i=1}^N (x_i - \mu_1)^k$ $\mu_1 \simeq \frac{1}{N} \sum_{i=1}^N x_i$ $\mu_2 \simeq \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_1)^2$ $\sigma = \sqrt{\mu_2}$ $\gamma = \frac{\mu_3}{\sigma^3}$ $K = \frac{\mu_4}{\sigma^4}$ $\kappa_e = \kappa - 3$ $\tau = \frac{\mu_5}{\sigma^5}$

where N is the number of data samples.

Potter et al., 2010

Problem #2: Aggregate Attributes We have too many attributes to show

attribute aggregation

- group attributes and compute a similarity score across the set
- dimensionality reduction to preserve meaningful structure

Similarity scores

- correlation
	- measure of similarity between 2 or more attributes
	- many variants—pearson, rank, multi-way, etc.
- regression
	- fit a model to the data
	- measure the quality of fit (i.e. R^2)

Pearson Correlation Coefficient

• A measure of the linearity between 2 sets

$$
\rho_{X,Y} = \frac{\mathrm{cov}(X,Y)}{\sigma_X \sigma_Y}
$$

where:

- cov is the covariance
- \bullet σ_{X} is the standard deviation of X
- \bullet σ_{Y} is the standard deviation of Y

$$
r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2 } \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2 }}
$$

where:

 \bullet n, x_i, y_i are defined as above

•
$$
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$
 (the sample mean); and

analogously for \bar{y}

- Given: $X = \{x_0, ..., x_n\}$, $Y = \{y_0, ..., y_n\}$
- Calculate mean(X), mean(Y), stdev(X), stdev(Y)

$$
\bullet \ \text{mean(X)} = \frac{\bar{x}}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i
$$

$$
r=\frac{1}{n}\:\frac{\sum_{i=1}^n(x_i-\bar{x})(y_i-\bar{y}}{\sigma_X\sigma_Y}
$$

•
$$
stdev(X) = \sigma_X
$$
 $\int_{\pi}^{\frac{1}{2}\sum (x_i - \bar{x})^2}$

- $X = \{1, 2.5, 3, 4.5\}$
- $Y = \{2, 2.5, 3.5, 4\}$
- mean (X) = 2.75, mean (Y) = 3
- stdev(X)= sqrt($(1-2.75)^2 + (2.5-2.75)^2 + (3-2.75)^2 + (4.5-2.75)^2 / 4$) = 1.25
- stdev(Y)= sqrt($(2-3)^2 + (2.5-3)^2 + (3.5-3)^2 + (4-3)^2 / 4 = 0.79$

- $X = \{1, 2.5, 3, 4.5\}$
- $Y = \{2, 2.5, 3.5, 4\}$
- $mean(X) = 2.75$, $mean(Y) = 3$
- stdev(X)= 1.25 , stdev(Y)= 0.79

$$
\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = 1/4 * (1-2.75)(2-3) + (2.5-2.75)(3.5-3) + (4.5-2.75)(4 = 0.94
$$

$-75)(2.5-3) +$ $(.75)(4-3)$

- $X = \{1, 2.5, 3, 4.5\}$
- $Y = \{2, 2.5, 3.5, 4\}$
- mean $(X) = 2.75$, mean $(Y) = 3$
- stdev(X)= 1.25 , stdev(Y)= 0.79
- $Cov(X,Y) = 0.94$

 $r = 0.94 / (1.25 * 0.79) = 0.95$

Spearman Rank Correlation

Spearman Rank Correlation

- Non-parametric correlation measurement
- sort(X) and sort(Y)
- assign X'/Y' rank in sorted list
- Calculate PCC(X', Y')

Spearman Rank Correlation

- $X = \{1, 2.5, 3, 4.5\}$
- $Y=\{2, 3.5, 2.5, 4\}$
- $X' = rank(X)$
- $Y' = rank(Y)$
- $SRC = PCC(X', Y')$

- $X = \{1, 2.5, 3, 4.5\}$
- X Sorted {1, 2.5, 3, 4.5}
- $X' = rank(X)$
- $X' = \{ rank(1), rank(2.5), rank(3), rank(4.5) \}$
- $X' = \{ 1, 2, 3, 4 \}$

- $Y=\{2, 3.5, 2.5, 4\}$
- Y Sorted {2, 2.5, 3.5, 4}
- $Y' = rank(Y)$
- $Y' = \{ rank(2), rank(3.5), rank(2.5), rank(4) \}$
- $Y' = \{ 1, 3, 2, 4 \}$

Multiple Attributes – Correlation Matrix

Many Attributes Multiple Correlation

Nguyen 2016

Multiple Correlation

$$
R^2 = \mathbf{c}^\top R_{xx}^{-1} \mathbf{c},
$$

$$
R_{xx} = \begin{pmatrix} r_{x_1x_1} & r_{x_1x_2} & \dots & r_{x_1x_1} \\ r_{x_2x_1} & \ddots & & \vdots \\ \vdots & & \ddots & \\ r_{x_Nx_1} & \dots & & r_{x_Nx_i} \end{pmatrix}
$$

 $\frac{1}{2}$

Multiple Correlation

- (12) 3-way • (4) 4-way
- (6) 2-way
- Composite Glyph

Nguyen 2016
Many Attributes Multiple Correlation

Nguyen 2016

Regression: Fitting a Model to Data

• Given:
$$
y_i = \alpha + \beta x_i + \varepsilon_i
$$

• Find α and β that minimize ε_i in the linear least squares sense (i.e. $\Sigma\varepsilon_i^2$ 2)

Regression: Fitting a Model to Data

• Can be computed directly

$$
\hat{\beta} = \frac{\sum_{i=1}^n (x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^n (x_i-\bar{x})^2}
$$

$$
\hat{\alpha} = \bar{y} - \hat{\beta}\,\bar{x}
$$

 $\frac{1}{-20}$

 -10

Linear Dimensionality reduction: Principal Component Analysis (PCA)

 \rightsquigarrow

S r

Nonlinear Dimensionality Reduction: Multidimensional Scaling (MDS)

FIGURE 13.1. Two-dimensional map of 18 world cities using the classical scaling algorithm on airline distances between those cities. The colors

Problem #3 What is lost or misinterpreted…

In other words, know the shapes (information) your statistic captures

Anscombe's Quartet

Four data sets, each comprising 11 (x, y) pairs. TABLE.

Graphs in Statistical Analysis. F. J. Anscombe. The American, Statistician, Vol. 27, No. 1. (Feb., 1973), pp. 17-21.

Accuracy o 2 decimal places $slus/minus 0.003$ O 3 decimal places o 2 and 3 decimal places, espectively

Statistical Limitations: Anscombe's quartet

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing

Justin Matejka and George Fitzmaurice Autodesk Research, Toronto Ontario Canada {first.last}@autodesk.com

ABSTRACT

Datasets which are identical over a number of statistical properties, yet produce dissimilar graphs, are frequently used to illustrate the importance of graphical representations when exploring data. This paper presents a novel method for generating such datasets, along with several examples. Our technique varies from previous approaches in that new datasets are iteratively generated from a seed dataset through random perturbations of individual data points, and can be directed towards a desired outcome through a simulated annealing optimization strategy. Our method has the benefit of being agnostic to the particular statistical properties that are to remain constant between the datasets, and allows for

same statistical properties, it is that four *clearly different* and *identifiably distinct* datasets are producing the same statistical properties. Dataset I appears to follow a somewhat noisy linear model, while Dataset II is following a parabolic distribution. Dataset III appears to be strongly linear, except for a single outlier, while Dataset IV forms a vertical line with the regression thrown off by a single outlier. In contrast, Figure 2B shows a series of datasets also sharing the same summary statistics as Anscombe's Quartet, however without any obvious underlying structure to the individual datasets, this quartet is not nearly as effective at demonstrating the importance of graphical representations.

While your nonular and affective for illustrating the

100

 20

Correlation != causality

and foot size is positively correlated with reading ability, etc.

Spurious correlations

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

tylervigen.com

http://www.tylervigen.com/spurious-correlations

Data sources: Centers for Disease Control & Prevention and Internet Movie Database

<http://www.tylervigen.com/spurious-correlations>

Data sources: U.S. Department of Agriculture and Centers for Disease Control & Prevention

<http://www.tylervigen.com/spurious-correlations>

Simpson's Paradox

• trend that appears in several different groups of data but disappears or reverses when these groups are combined
Table 1: Change in Median Wage by Education from 2000 to 201:

BY FLOYD NORRIS MAY 1, 2013 12:17 PM

Table 2: Number Employed (in millions) by Education: 2000, 2013

Segment Overall No degree HS, no college Some college Bachelor's +

Economix

Explaining the Science of Everyday Life

Can Every Group Be Worse Than Average? Yes.

<http://students.brown.edu/seeing-theory/index.html>

