Visualization for Data Science DS-4630 / CS-5630 / CS-6630

FILTERING, AGGREGATION, \& STATS

Reducing Items and Attributes

Θ Filter
\rightarrow Items

\rightarrow Attributes

Θ Aggregate
\rightarrow Items

\rightarrow Attributes

why reduce?

- Too many data items and/or too many attributes to focus on what is important in the data

filter

- elements are eliminated to support dynamic queries
- coupling between encoding and interaction so that user can immediately see the results of an action
\rightarrow Items

\rightarrow Attributes

ITEM FILTERING

LPDATED Jine 25.2012

New York Health Department Restaurant Ratings Map

The New York City Department of Health and Mental Hygiene performs unannounced sanitary inspections of every restaurant at least once per year Violation points result in a letter grade, which can be explored in the map below, along with violation descriptions. The information on this map will be updated every two weeks. For menus and reviews by New York Times critics, visit our restaurants guide. Revend Arscio :

ATTRIBUTE FILTERING

Controlling filtering

- Driven by 2 approaches
- Widget-based filtering

- Visualization-based filtering

Controlling Filtering: scented widgets

- information scent: user gets sense of data
- GOAL: lower the cost of information forging through better cues

Controlling Filtering: interactive legends

- controls combining the visual representation of static legends with interaction mechanisms of widgets
- define and control visual display together

aggregate

- a group of elements is
represented by a new derived element that stands in for the entire group
\rightarrow Items

\rightarrow Attributes

Numerous ways to reduce...

- statistics, topology, machine learning, etc.

Problem \#1: Aggregate Items

- We have too many data points to show

Histograms

- Generally referring to a bar chartbased visualization that allows evaluating distribution of values.
- Really, histograms capture a distribution of data

Counts of user responses for a user interface

Categorical data

- Simply count occurrences of each type and visualize

Gender	Goal	Gender	Goal
boy	Sports	girl	Sports
boy	Popular	girl	Grades
girl	Popular	boy	Popular
girl	Popular	boy	Popular
girl	Popular	boy	Popular
girl	Popular	girl	Grades
girl	Popular	girl	Sports
girl	Grades	girl	Popular
girl	Sports	girl	Grades
girl	Sports	girl	Sports

Continuous Data Histograms

Index	net worth
1	100,360
2	109,770
3	96,860
4	97,860
5	108,930
6	124,330
7	101,300
8	112,710
9	106,740
10	120,170

Index	Taste score	Index	Taste score
1	12.3	11	34.9
2	20.9	12	57.2
3	39	13	0.7
4	47.9	14	25.9
5	5.6	15	54.9
6	25.9	16	40.9
7	37.3	17	15.9
8	21.9	18	6.4
9	18.1	19	18
10	21	20	38.9

Calculating a continuous histogram

- Given: $\mathrm{X}=\left\{\mathrm{x}_{0}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}$
- Select: k bins
- $\operatorname{bin}_{\mathrm{i}}=\mathrm{k} *\left(\mathrm{x}_{\mathrm{i}}-\min \mathrm{X}\right) /(\max X-\min X)$

Calculating a continuous histogram

- $\mathrm{X}=\{1,2.5,3,4\}$
- $k=3$

Calculating a continuous histogram

- $X=\{1,2.5,3,4\}$
- $\mathrm{k}=3$

Calculating a continuous histogram

- $\mathrm{X}=\{1,2.5,3,4\}$
- $k=3$
- $\operatorname{bin}_{\mathrm{i}}=$ floor $\left(\mathrm{k}^{*}\left(\mathrm{x}_{\mathrm{i}}-\min \mathrm{X}\right) /(\max \mathrm{X}-\min \mathrm{X})\right)$

Calculating a continuous histogram

- $X=\{1,2.5,3,4\}$
- $k=3$
- $\operatorname{bin}_{\mathrm{i}}=$ floor $\left(3^{*}\left(\mathrm{x}_{\mathrm{i}}-1\right) /(4-1)\right)$

Calculating a continuous histogram

- $X=\{1,2.5,3,4\}$
- k=3
- 1 -> floor $(3$ * $(1-1) /(4-1))=\operatorname{Bin} 0$

Calculating a continuous histogram

- $X=\{1,2.5,3,4\}$
- $k=3$
- 2.5 -> floor (3 * $(2.5-1) /(4-1))=\operatorname{Bin} 1$

Calculating a continuous histogram

- $X=\{1,2.5,3,4\}$
- $k=3$
- 3 -> floor $\left(3^{*}(3-1) /(4-1)\right)=\operatorname{Bin} 2$

Calculating a continuous histogram

- $\mathrm{X}=\{1,2.5,3,4\}$
- $k=3$
- 4 -> floor($\left.3^{*}(4-1) /(4-1)\right)=\operatorname{Bin} 3$?

Calculating a continuous histogram

- $\mathrm{X}=\{1,2.5,3,4\}$
- $k=3$
- 4 -> floor $\left(3^{*}(4-1) /(4-1)\right)=\operatorname{Bin} 2$

Calculating a continuous histogram

- $X=\{1,2.5,3,4\}$
- $k=3$

Conditional Histograms

Histogram of body temperatures in Fahrenheit

Gender 1 body temperatures in Fahrenheit Gender 2 body temperatures in Fahrenheit

2D Histograms

Categorical data

Gender	Goal	Gender	Goal
boy	Sports	girl	Sports
boy	Popular	girl	Grades
girl	Popular	boy	Popular
girl	Popular	boy	Popular
girl	Popular	boy	Popular
girl	Popular	girl	Grades
girl	Popular	girl	Sports
girl	Grades	girl	Popular
girl	Sports	girl	Grades
girl	Sports	girl	Sports

Mosaic Plots

Ordinal data

$\left.\begin{array}{cccc} \hline 0 & 0^{0} & & \\ 0^{0} & 0 & 0 & 0 \\ 0 & & 0^{\circ} \\ 0 & 0 & 0 & 0 \end{array} \right\rvert\,$	$\begin{array}{lll} 0 & 0 \\ & 0 & \\ 0 & \end{array}$			\bigcirc
	$\begin{array}{llllll} \hline & 0 & & 0 & \\ 0 & 0 & & & \\ 0 & 0 & 0 & 0 & 0 \end{array}$	0		
\bigcirc	$\cdots 0^{\circ}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$		
		- 0	$0_{0} 0_{0}^{0} 0_{0}^{0}$	
			-	

	-2	-1	0	1	2
-2	24	5	0	0	1
-1	6	12	3	0	0
0	2	4	13	6	0
1	0	0	3	13	2
2	0	0	0	1	5

Ordinal data

Counts of user responses for a user interface

Arsenic in well water

spatial aggregation

- modifiable areal unit problem
- in cartography, changing the boundaries of the regions used to analyze data can yield dramatically different results

spatial aggregation: Congressional Districts

Histogram Challenges: Selecting Resolution

Mean (Average) $=27$
Standard Deviation = 6

Histogram Challenges: Selecting Resolution

Mean (Average) $=27$
Standard Deviation = 6

Statistical Modeling

Summary Statistics - mean

Definition: 3.1 Mean

Assume we have a dataset $\{x\}$ of N data items, x_{1}, \ldots, x_{N}. Their mean is

$$
\text { mean }(\{x\})=\frac{1}{N} \sum_{i=1}^{i=N} x_{i} .
$$

- The average
- The best estimate of the value of a new data point in the absence of any other information about it

Summary statistics - Standard deviation

Definition: 3.2 Standard deviation

Assume we have a dataset $\{x\}$ of N data items, x_{1}, \ldots, x_{N}. The standard deviation of this dataset is is:

$$
\operatorname{std}\left(x_{i}\right)=\sqrt{\frac{1}{N} \sum_{i=1}^{i=N}\left(x_{i}-\text { mean }(\{x\})\right)^{2}}=\sqrt{\text { mean }\left(\left\{\left(x_{i}-\text { mean }(\{x\})\right)^{2}\right\}\right)} .
$$

- Think of this as a scale
- Average distance from mean

Standard Score (aka z score)

Definition: 3.8 Standard coordinates
Assume we have a dataset $\{x\}$ of N data items, x_{1}, \ldots, x_{N}. We represent these data items in standard coordinates by computing

$$
\hat{x}_{i}=\frac{\left(x_{i}-\operatorname{mean}(\{x\})\right)}{\operatorname{std}(x)} .
$$

We write $\{\hat{x}\}$ for a dataset that happens to be in standard coordinates.

- Number of standard deviations a point is away from mean

Normal Distribution

An Example: Statistical Distribution

An Example: Comparing Histogram \& Distribution

An Example: Comparing Histogram \& Distribution

Boxplot

Boxplot

Boxplots

Boxplots

Given a data set $\left\{x_{i}\right\}_{i=1}^{N}$, we define the following quantities
k th Central Moments: $\quad \mu_{k} \simeq \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{1}\right)^{k}$
Mean:

$$
\mu_{1} \simeq \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Variance:

$$
\mu_{2} \simeq \frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{1}\right)^{2}
$$

Standard Deviation:

$$
\sigma=\sqrt{\mu_{2}}
$$

Skew:

$$
\gamma=\frac{\mu_{3}}{\sigma^{3}}
$$

Kurtosis:

$$
\kappa=\frac{\mu_{4}}{\sigma^{4}}
$$

Excess Kurtosis:

$$
\kappa_{e}=\kappa-3
$$

Tailing:

$$
\tau=\frac{\mu_{5}}{\sigma^{5}}
$$

where N is the number of data samples.

Problem \#2: Aggregate Attributes We have too many attributes to show

attribute aggregation

- group attributes and compute a similarity score across the set
- dimensionality reduction to preserve meaningful structure

Similarity scores

- correlation
- measure of similarity between 2 or more attributes
- many variants-pearson, rank, multi-way, etc.
- regression
- fit a model to the data
- measure the quality of fit (i.e. R^{2})

Pearson Correlation Coefficient

- A measure of the linearity between 2 sets

$$
\rho_{X, Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

where:

- cov is the covariance
- σ_{X} is the standard deviation of X
- σ_{Y} is the standard deviation of Y

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}}
$$

where:

- n, x_{i}, y_{i} are defined as above
- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ (the sample mean); and analogously for \bar{y}
- Given: $X=\left\{x_{0}, \ldots, x_{n}\right\}, Y=\left\{y_{0}, \ldots, Y_{n}\right\}$
- Calculate mean (X), mean $(\mathrm{Y}), \operatorname{stdev}(\mathrm{X}), \operatorname{stdev}(\mathrm{Y})$
- $\operatorname{mean}(\mathrm{X})=\quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- $\operatorname{stdev}(\mathrm{X})=$

$$
\boldsymbol{\sigma}_{\boldsymbol{X}} \quad \sqrt{\frac{1}{n} \sum_{\left(x_{i}-\bar{x}\right)^{2}}^{2}}
$$

$$
r=\frac{1}{n} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sigma_{X} \sigma_{Y}}
$$

- $X=\{1,2.5,3,4.5\}$
- $Y=\{2,2.5,3.5,4\}$
- $\operatorname{mean}(X)=2.75, \operatorname{mean}(Y)=3$
- $\operatorname{stdev}(X)=\operatorname{sqrt}\left((1-2.75)^{2}+(2.5-2.75)^{2}+(3-2.75)^{2}+(4.5-2.75)^{2} / 4\right)=1.25$
- $\operatorname{stdev}(\mathrm{Y})=\operatorname{sqrt}\left((2-3)^{2}+(2.5-3)^{2}+(3.5-3)^{2}+(4-3)^{2} / 4\right)=0.79$
- $X=\{1,2.5,3,4.5\}$
- $Y=\{2,2.5,3.5,4\}$
- $\operatorname{mean}(X)=2.75, \operatorname{mean}(Y)=3$
- $\operatorname{stdev}(X)=1.25, \operatorname{stdev}(Y)=0.79$

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{\bar{n}}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & =1 / 4 *(1-2.75)(2-3)+(2.5-2.75)(2.5-3)+ \\
& (3-2.75)(3.5-3)+(4.5-2.75)(4-3) \\
& =3.75 / 4=0.94
\end{aligned}
$$

- $X=\{1,2.5,3,4.5\}$
- $Y=\{2,2.5,3.5,4\}$
- $\operatorname{mean}(X)=2.75, \operatorname{mean}(Y)=3$
- $\operatorname{stdev}(X)=1.25, \operatorname{stdev}(Y)=0.79$
- $\operatorname{Cov}(X, Y)=0.94$

$$
r=0.94 /(1.25 * 0.79)=0.95
$$

Spearman Rank Correlation

Spearman Rank Correlation

- Non-parametric correlation measurement
- $\operatorname{sort}(\mathrm{X})$ and sort(Y$)$
- assign X^{\prime} / Y^{\prime} rank in sorted list
- Calculate PCC($\left.X^{\prime}, Y^{\prime}\right)$

Spearman Rank Correlation

IQ, (X)	Hours of TV per week, (Y)	rank (X^{\prime})	rank (Y')
86	0	1	1
97	20	2	6
99	28	3	8
100	27	4	7
101	50	5	10
103	29	6	9
106	7	7	3
110	17	8	5
112	6	9	2
113	12	10	4

- $X=\{1,2.5,3,4.5\}$
- $Y=\{2,3.5,2.5,4\}$
- $X^{\prime}=\operatorname{rank}(X)$
- $\mathrm{Y}^{\prime}=\operatorname{rank}(\mathrm{Y})$
- $\operatorname{SRC}=\operatorname{PCC}\left(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right)$
- $X=\{1,2.5,3,4.5\}$
- X Sorted \{1, 2.5, 3, 4.5\}
- $X^{\prime}=\operatorname{rank}(X)$
- $X^{\prime}=\{\operatorname{rank}(1), \operatorname{rank}(2.5), \operatorname{rank}(3), \operatorname{rank}(4.5)\}$
- $X^{\prime}=\{1,2,3,4\}$
- $Y=\{2,3.5,2.5,4\}$
- Y Sorted $\{2,2.5,3.5,4\}$
- $\mathrm{Y}^{\prime}=\operatorname{rank}(\mathrm{Y})$
- $Y^{\prime}=\{\operatorname{rank}(2), \operatorname{rank}(3.5), \operatorname{rank}(2.5), \operatorname{rank}(4)\}$
- $Y^{\prime}=\{1,3,2,4\}$

Multiple Attributes - Correlation Matrix

Many Attributes Multiple Correlation

Multiple Correlation

$$
\begin{gathered}
R^{2}=\mathbf{c}^{\top} R_{x x}^{-1} \mathbf{c}, \\
R_{x x}=\left(\begin{array}{cccc}
r_{x_{1} x_{1}} & r_{x_{1} x_{2}} & \ldots & r_{x_{1} x_{N}} \\
r_{x_{2} x_{1}} & \ddots & & \vdots \\
\vdots & & \ddots & \\
r_{x_{N} x_{1}} & \cdots & & r_{x_{N} x_{N}}
\end{array}\right) .
\end{gathered}
$$

Multiple Correlation

Many Attributes Multiple Correlation

Regression: Fitting a Model to Data

- Given: $y_{i}=\alpha+\beta x_{i}+\varepsilon_{i}$
- Find α and β that minimize ε_{i} in the linear least squares sense (i.e. $\Sigma \varepsilon_{i}^{2}$)

Regression: Fitting a Model to Data

- Can be computed directly

$$
\begin{gathered}
\hat{\beta}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
\hat{\alpha}=\bar{y}-\hat{\beta} \bar{x}
\end{gathered}
$$

Linear Dimensionality reduction: Principal

 Component Analysis (PCA)

Nonlinear Dimensionality Reduction: Multidimensional Scaling (MDS)

Problem \#3 What is lost or misinterpreted...

In other words, know the shapes (information) your statistic captures

Anscombe's Quartet

Data set	1-3	1	2	3	4	4
Variable	x	y	y	y	X	y
Obs. no. 1	10.0	8.04	9.14	7.46	8.0	6.58
2	8.0	6.95	8.14	6.77	8.0	5.76
3	13.0	7.58	8.74	12.74	8.0	7.71
4	9.0	8.81	8.77	7.11	8.0	8.84
5	11.0	8.33	9.26	7.81	8.0	8.47
6	14.0	9.96	8.10	8.84	8.0	7.04
7	6.0	7.24	6.13	6.08	8.0	5.25
8	4.0	4.26	3.10	5.39	19.0	12.50
9	12.0	10.84	9.13	8.15	8.0	5.56
10	7.0	4.82	7.26	6.42	8.0	7.91
11	5.0	5.68	4.74	5.73	8.0	6.89

TABLE. Four data sets, each comprising 11 (x, y) pairs.

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y	4.125	plus/minus 0.003
Correlation between x and y	0.816	to 3 decimal places
Linear regression line	$y=3.00+0.500 x$	to 2 and 3 decimal places, respectively

Statistical Limitations: Anscombe's quartet

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing

Justin Matejka and George Fitzmaurice
Autodesk Research, Toronto Ontario Canada
\{first.last $\}$ @autodesk.com

Figure 1. A collection of data sets produced by our technique. While different in appearance, each has the same summary statistics (mean, std. deviation, and Pearson's corr.) to 2 decimal places. ($\bar{x}=54.02, \bar{y}=48.09, s d x=14.52$, sdy $=24.79$, Pearson's $r=+0.32$)

ABSTRACT

Datasets which are identical over a number of statistical properties, yet produce dissimilar graphs, are frequently used to illustrate the importance of graphical representations when exploring data. This paper presents a novel method for exploring wis per examper encrating such drom previous approches in ech datasets are iteratively andom perturbations of individual data points, and can be directed towards a desired outcome through a simulated annealing optimization strategy. Our method has the benefit of being agnostic to the particular statistical properties that are to remain constant between the datasets, and allows for
same statistical properties, it is that four clearly different and identifiably distinct datasets are producing the same statistical properties. Dataset I appears to follow a somewhat oisy linear model, while Dataset II is following a parabolic istribution. Dataset HI Dears to be trongly linearabolic surion. Dataset ir appears to be strongly linear, except th the ersion the she igure 2B shows a series of datasets also sharing the same mber under ing his quartet is not nearly as effective at demonstrating the importance of graphical representations.
whiln ..an. momelon and affantive far illuotrotion that

- "The more cigarettes we consume, the longer we live!"
- "There is a positive relationship between cigarette consumption and life expectancy at a country-by-country level!"

- "The more cigarettes we consume, the longer we live!"
- "There is a positive relationship between cigarette consumption and life expectancy at a country-by-country level!"

Correlation != causality

and foot size is positively correlated with reading ability, etc.

Spurious correlations

> US spending on science, space, and technology correlates with
> Suicides by hanging, strangulation and suffocation

Number of people who drowned by falling into a pool
 correlates with
 Films Nicolas Cage appeared in

[^0]Number of people who died by becoming tangled in their bedsheets
2000 Correlation: 94.71\% (r=0.947091)

- "The more cigarettes we
consume, the longer welive!"
- "There is a positive relationship between cigarette consumption and life expectancy at a country-by-country level!"

Life expectancy
(in years)

Simpson's Paradox

- trend that appears in several different groups of data but disappears or reverses when these groups are combined

	Men			Women	
	Applicants		Admitted	Applicants	Admitted
Total		8442	44\%	4321	35\%
Department		Men		Women	
		Applicants	Admitted	d Applicants	Admitted
A		825	62\%	\% 108	82\%
B		560	63\%	\% 25	68\%
C		325	37\%	\% 593	34\%
D		417	33\%	\% 375	35\%
E		191	28\%	\% 393	24\%
F		373	6\%	\% 341	7\%

Table 1: Change in Median Wage by Education from 2000 to 201

Segment	Change in Median Wage (\%)
Overall	$+0.9 \%$
No degree	-7.9%
HS, no college	-4.7%
Some college	-7.6%
Bachelor's +	-1.2%

Can Every Group Be Worse Than Average? Yes. bY fLoyd norris may 1, 2013 12:17 PM

Table 2: Number Employed (in millions) by Education: 2000, 2013

Segment	Employed 2000	Employed 2013	Change (\%)
Overall	89.4	95.0	$+6.4 \%$
No degree	8.8	7.0	-21.3%
HS, no college	28.0	25.0	-10.6%
Some college	24.7	26.0	$+5.4 \%$
Bachelor's +	27.8	37.0	$+33.0 \%$

http://students.brown.edu/seeing-theory/index.html

ScyA

[^0]: Data sources: Centers for Disease Control \& Prevention and Internet Movie Databas

