
Paul Rosen
paul.rosen@utah.edu
@paulrosenphd
https://cspaul.com

Visualization for Data Science
DS-4630 / CS-5630 / CS-6630

Managing Projects with Git

Git is a distributed version-control system

• Terminology: In git-speak, a “version” is called a “commit.”
• Git keeps track of the history of your commits, so you can go back and

look at earlier versions or just give up on the current version and go
back to some earlier version.
• Can be used to implement a variety of software configuration

management models and workflows

2

Git is a distributed version-control system

• You keep your files in a repository on your local machine.
• You synchronize your repository with a remote repository on a server

(in our case, GitHub).
• You protect your code from system crashes by synchronizing with the server.
• If you move from one machine to another, you can pick up the changes by

synchronizing with the server.
• If you work on a team, other people’s uploads can be synchronized using the

server.

3

Git Tools

• A collection of many tools
• Very flexible

• You can do anything the model permits
• Including shooting yourself in the foot

• Need to understand the underlying model

Groups of Git commands

• Setup and branch management
• init, checkout, branch, clone

• Modify
• add, delete, rename, commit

• Get information
• status, diff, log

• Create reference points
• tag, branch

• Synchronization with remote
• push, pull, fetch, sync

Repository Contains

• files & directories
• commits
• ancestry relationships

• http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

Ancestry graph features

• form a directed acyclic graph (DAG)
•

• Snapshots of file status
•

• identify versions of interest
• including “releases”

•
• divergent path for source code modification

•
• is current checkout
• usually points to a branch

•
• “staging area”
• what is to be committed

• http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

http://edgyu.excess.org/git-tutorial/2008-07-09/intro-to-git.pdf

add (stage) files

Working
directory

Repository
(.git directory)

Index
 (staging area)

Checkout the project (optional, most of the time)

commit

Local Operations

m
od

ify
 lo

ca
l f

ile
s

Git transport commands

http://osteele.com/images/2008/git-transport.png

sync

http://osteele.com/images/2008/git-transport.png

Git Software

• Windows
• Git command line tools – https://git-scm.com/download/win
• Git GUI – https://tortoisegit.org/ (also requires download of command line

tools)
• MAC
• Install xcode and the command-line tools

• https://developer.apple.com/xcode/
• http://railsapps.github.io/xcode-command-line-tools.html

• Linux
• git should already be installed. If not, use the appropriate package manager

(e.g. apt or yum) to install it.

https://git-scm.com/download/win
https://tortoisegit.org/
https://developer.apple.com/xcode/
http://railsapps.github.io/xcode-command-line-tools.html

Getting Started

• Create a GitHub account, if you don’t already have one
(https://github.com/)
• GitHub Education account is optional

(https://education.github.com/discount_requests/new)

• Checkout the assignments for link to setup your repositories
• Once the repository is created (this can take a few minutes)

determine the remote path and pick a local directory for code.

https://github.com/
https://education.github.com/discount_requests/new

Finding Remote Path

Sample session commands

> git clone <remote_path> <local_directory>
> cd <local_directory>

> git pull

> touch newfile.txt
> git add newfile.txt

> git commit –m “added a new file”

> git push

Suggested workflow
sync (or pull)

edit

commit

edit

commit

edit

commit

sync (or push)

sync (or pull)

edit

commit

edit

commit

edit

commit

sync (or push)

sync (or pull)

edit

commit

edit

commit

edit

commit

sync (or push)

stop working /
start working

stop working/
change

computers

server server
This is what

we grade
from!

References

• http://book.git-scm.com/index.html
• http://excess.org/article/2008/07/ogre-git-tutorial/
• http://www-cs-students.stanford.edu/~blynn/gitmagic/
• http://progit.org/book/
• http://www.geekherocomic.com/2009/01/26/who-needs-git/
• Many YouTube videos

• ex. https://www.youtube.com/watch?v=HVsySz-h9r4

http://book.git-scm.com/index.html
http://excess.org/article/2008/07/ogre-git-tutorial/
http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://progit.org/book/
http://www.geekherocomic.com/2009/01/26/who-needs-git/
https://www.youtube.com/watch?v=HVsySz-h9r4

•RECOMMENDED WATCHING
•Git & GitHub Crash Course

•https://www.youtube.com/watch?v=SWYqp7iY_Tc

https://www.youtube.com/watch?v=SWYqp7iY_Tc

•RECOMMENDED READING
•The Grammar of Graphics: Chapters 8-9 (pp. 155-

254)

