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MVN Tasks rely on  both the topology of the 
network and the attributes of the nodes and edges

How is an MVN task different than a regular graph task? 
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B. Pickart
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What is an efficient way I can complete all my errands?



▸How many of my collaborators are in the oceanography field?

Tasks that rely on the topology of the network 
and the attributes of the nodes and edges

▸Which cluster has the highest number of collaborations? 

▸What is the  fastest route to get all my errands done?



MVNV tasks are applied to topological structures  

Single Node/Edge Node Neighbors

Cluster

Path

Network/Subnetwork



Network and Attribute Characteristics
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Network Size

Small 
<100

Medium 
100-1000

Large 
>1000



Network Types

Sparse Dense Layered Trees



Taxonomy of Layouts and Operations



Layouts and Operations Taxonomy







Separate views for  
Topology and Attributes

Multiple layouts for  
Topology or Attributes
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On-Node / On-Edge Encoding
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Gehlenborg et al. 2010
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Encoding 
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Elzen and Wijk, 2014

On-Node / On-Edge 
Encoding 

Aggregating Nodes/Edges



On-Node / On-Edge 
Encoding 

Jankun-Kelly and Ma, 2003



On-Node / On-Edge 
Encoding 

Nielsen, 2009



On-Node / On-Edge 
Encoding 

Schöffel et al, 2016



Recommended for small networks when only a few (usually under five) attributes on the 
nodes are shown, or in combination with a zooming/filtering strategy

Scalability.  
Node size leaves little space to encode attributes.

Is easily understood by most users 
Works well for all types of networks On-Node / On-Edge 

Encoding 
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Semantic Substrates Shneiderman and Aris, 2006
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Encoding 

Cerebral  Barskey et al. 2008



Recommended for networks where nodes can be separated into groups 
easily and where these groups are central to the analysis

Less scalable with respect to the number of nodes 
and network density than node-link layouts. 

Neighborhoods, paths, and clusters are not easily 
visible if they span different facets.

Well suited for networks with different 
node types or with an important 
categorical or set-like attribute.

Attribute-Driven 
 Faceting 



Attribute-Driven Positioning
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Graph Dice Bezerianos et al. 2010

On-Node / On-Edge 
Encoding 

Attribute-Driven 
Positioning
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Encoding 
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Positioning 72

Edge Map Dork et al. 2011

Querying and Filtering



Recommended  for smaller, sparse networks where relationships between node attributes are 
paramount to the analysis task, and topological features only provide context

Does not lend itself well to visualizing 
the topology of the network.

Well suited for quantitative attributes
Attribute-Driven 

Positioning



Tools and Applications
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Cola.js (A.K.A. "WebCoLa") is an open-source JavaScript library for arranging your 
HTML5 documents and diagrams using constraint-based optimization techniques.
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Moritz Stefaner, Musli Ingredient Network. https://truth-and-beauty.net/projects/muesli-ingredient-network
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Matrix Reordering



Reorder.js
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Recommended for smaller, complex and dense networks with rich node and/or edge 
attributes, for all tasks except for those involving paths

Requires quadratic space with respect to the 
number of nodes.  

Complexity of choosing the right reordering 
algorithm

Ideal for dense and completely 
connected networks Adjacency 

Matrix
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Recommended for layered or k-partite networks with limited skiplinks.

Links between nonconsecutive layers can be 
problematic to integrate and non-intuitive

Well suited for layered networks
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BioFabric

Longabaugh, 2012



BioFabric



Recommended for small, sparse networks with many nodes and rich edge attributes

More difficult to discover 
neighbors and clusters in 
Biofabric compared to matrices.

Can be used to visualize rich 
edge attributes and node 

attributes at the same time
BioFabric
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    Activity



get your own twitter network @ 
 bit.ly/twitter-network



Adjacency 
Matrix

A
B
C

D
E

A B C D E

BioFabric

On-Node / On-Edge 
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Positioning

Choose a representation



15 minutes



Exchange visualizations with your neighbor 
and explain your encodings.



How many tweets does the person who has the 
most connections in this graph have?



Does the person with the least tweets have 
more interactions of type retweet or mention?



View Operations

Juxtaposed Integrated Overloaded
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Juxtaposed

Querying and Filtering

Deriving New AttributesVIGOR Pienta et al. 2018



Juxtaposed

Graph Dice Bezerianos et al. 2010



Juxtaposed

Guo, 2009



Juxtaposed



Recommended for large networks and/or very large numbers or 
heterogeneous types of node and link attributes

Not great for tasks on topological structures 
beyond a single node or edge. 

Independent views can optimize for 
topology and attribute independently. 

Juxtaposed
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Integrated

Juniper Nobre et al. 2018



Integrated

Querying and Filtering

Deriving New Attributes

Juniper Nobre et al. 2018



Integrated

Pathline Meyer et al. 2010



Integrated

Circos   
Krzywinski et al. 2009



Integrated



Recommended for networks with several, heterogenous, node attributes 
and well suited for tasks on single nodes, neighbors, and paths

Not suitable for networks that can not be sensibly 
linearized.

good at integrating attributes with 
topology, if the topology can be 

represented in a linear layout. Integrated



Overloaded

Overloaded



GMaps  Gansner et al. 2010

Overloaded



Bubble Sets Collins et al. 2009

Overloaded



LineSets Alper et al. 2011

Overloaded



Overloaded



Recommended for recommend overloading for the particular use case of 
visualizing set-memberships or clusters on top of node-link diagrams

Not suitable for displaying more than one or two 
attributes at a time.

good at displaying sets and clusters

Integrated



Layout Operations
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Small Multiples

On-Node / On-Edge 
Encoding 

Peakspotting - https://truth-and-beauty.net/projects/peakspotting

https://truth-and-beauty.net/projects/peakspotting
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Small Multiples



Recommended for small networks where the tasks are focused on attribute comparison

Not ideal for large networks, or tasks on clusters

Common layout facilitates attribute 
comparisons in specific topological features Small Multiples
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NodeTrix Henry et al. 2007

HybridsHybrids



GrouseFlocks Archambault et al. 2008

HybridsHybrids



HybridsHybrids



Recommended for networks with irregular degree distribution and few attributes

Adds complexity since users must parse different 
techniques simultaneously.

Can be useful for networks with irregular 
degree distribution

HybridsHybrids



Data Operations

Converting Attributes/Edge to Nodes

Querying and FilteringAggregating Nodes/Edges

Deriving New Attributes Clustering



Elzen and Wijk, 2014

Aggregating Nodes/Edges



Wattenberg, 2006

Aggregating Nodes/Edges



Deriving New Attributes

Edge Map Dork et al. 2011



vdl.sci.utah.edu/mvnv/


