# Designing Visualizations

Sean McKenna <u>sean@cs.utah.edu</u> October 4<sup>th</sup>, 2016





#### **About Me**

- Sean McKenna
  - 5<sup>th</sup> year Ph.D. student in visualization
  - advisor: Dr. Miriah Meyer
  - <a href="http://mckennapsean.com">http://mckennapsean.com</a>

# design process qualitative coding company research organization university info. security operational organization users adata methods tools deployment







#### cyber security





#### **Designing Visualizations**

- Intro to Design
- Real World Example
- Nested Model
- Design Activity Framework
- Design Methods
- Final Projects

# Intro to Design



#### What is Design?

- creating something new to solve a problem
- can be used to make buildings, chairs, user interfaces, etc.
- design is used in many fields
- many possible users or tasks



## What is Design Not?

- just making things pretty
- art appreciation of beauty or emotions invoked

- something without a clear purpose
- building without justification or evidence





http://woodyart211.blogspot.com/2015/01/art-vs-design-comments.html

#### Form & Function

• commonly: "form follows function"



http://img.weburbanist.com/wp-content/uploads/2015/05/sculptural-furniture-main-960x481.jpg

- function can constrain possible forms
  - form depends on tasks that must be achieved

 "the better defined the goals of an artifact, the narrower the variety of forms it can adopt" –Alberto Cairo

The Functional Art: An introduction to information graphics and visualization. New Riders, 2012.

## Why does Design Matter for Vis?

many ineffective visualization combinations

users with unique problems & data

variations of tasks

large design space

## Why does Design Matter for Vis?



#### When do we Design?

- wicked problems
  - no clear problem definition
  - solutions are either good or bad (not true/false)
  - no clear point to stop with a solution

Dilemmas in a general theory of planning. Rittel, H.W. and Webber, M.M., Policy Sciences, 1973.

- examples of non-wicked ("tame") problems
  - mathematics, chess, puzzles
- many different examples of wicked problems

#### Relation to Other Fields

• user-centered design (UCD) or human-centered design (HCD)

engineering / architecture

human-computer interaction (HCI)

human-machine/human-robot interaction (HMI/HRI)

## Problem-Driven vs Technique-Driven

- problem-driven
  - top-down approach
  - identify a problem encountered by users
  - design a solution to help users work more effectively
  - sometimes called a design study



- bottom-up approach
- invent new idioms or algorithms
- classify or compare against other idioms and algorithms





## Real World Example



what is cyber security?





## What is Cyber Security?

- analysts protect networks against:
  - information disclosure
  - theft
  - denial of service
- why is this hard?
  - LOTS of data
  - human interpretation of human attackers
  - attacks are robust



http://images.politico.com/global/2012/08/120801 cybersecurity analyst ap 328.jp



## **Cyber Security Dataset**

- intrusion detection system (IDS) data
  - captures alerts
  - rules triggered and may hint at potential incidents
  - requires a priori knowledge

| time                | id   | name | origin          | origin location     | destination   | destin. location    | class     |
|---------------------|------|------|-----------------|---------------------|---------------|---------------------|-----------|
| 01/23/1998 16:56:12 | 345  | WCA  | 192.168.1.30    | Lexington, MA       | 68.38.97.25   | Hope, IN            | detected  |
| 01/23/1998 16:56:15 | 2335 | MBP  | 68.230.80.60    | Phoenix, AZ         | 192.168.1.30  | Lexington, MA       | potential |
| 01/23/1998 16:56:17 | 43   | КРО  | 192.168.0.40    | Lexington, MA       | 176.151.22.45 | Angouleme, France   | other     |
| 01/23/1998 16:56:17 | 345  | JOS  | 46.185.133.223  | Al Jubayhah, Jordan | 192.168.0.20  | Lexington, MA       | attempt   |
| 01/23/1998 16:56:19 | 44   | КРО  | 192.168.0.40    | Lexington, MA       | 175.29.141.60 | Jessore, Bangladesh | other     |
| 01/23/1998 16:56:24 | 371  | MBV  | 128.240.221.153 | Newcastle, UK       | 192.168.0.20  | Lexington, MA       | detected  |



## **Cyber Security Dataset**

• exercise: what are some types of encodings we could use? why?

| time                | id   | name | origin          | origin location     | destination   | destin. location    | class     |
|---------------------|------|------|-----------------|---------------------|---------------|---------------------|-----------|
| 01/23/1998 16:56:12 | 345  | WCA  | 192.168.1.30    | Lexington, MA       | 68.38.97.25   | Hope, IN            | detected  |
| 01/23/1998 16:56:15 | 2335 | MBP  | 68.230.80.60    | Phoenix, AZ         | 192.168.1.30  | Lexington, MA       | potential |
| 01/23/1998 16:56:17 | 43   | KPO  | 192.168.0.40    | Lexington, MA       | 176.151.22.45 | Angouleme, France   | other     |
| 01/23/1998 16:56:17 | 345  | JOS  | 46.185.133.223  | Al Jubayhah, Jordan | 192.168.0.20  | Lexington, MA       | attempt   |
| 01/23/1998 16:56:19 | 44   | KPO  | 192.168.0.40    | Lexington, MA       | 175.29.141.60 | Jessore, Bangladesh | other     |
| 01/23/1998 16:56:24 | 371  | MBV  | 128.240.221.153 | Newcastle, UK       | 192.168.0.20  | Lexington, MA       | detected  |



#### What about the User?

- worked with an analyst on-campus
- worked with analysts at MIT LL and government sites

- conducted interviews, observations
  - analysts find anomalies in data streams to protect networks
  - for one user: "main bottleneck is the hard drive read times"
  - dashboards play an important role: "pictures are great when going up to management because you have 60 seconds to make your case"



#### Personas Design Method

• "documents to foster communication within a design team as archetypes of users, their behavior, and their knowledge"

Universal methods of design. Hanington, B. and Martin, B., 2012.

- to build personas:
  - conducted interviews across stakeholders
- identified four types of personas:
  - analyst, manager, director of IT, and a CEO
  - specific to a cyber security dashboard

Unlocking user-centered design methods for building cyber security visualizations. McKenna, S., Staheli, D. and Meyer, M., IEEE VizSec, 2015.



https://www.flickr.com/photos/nnova/2081056587/in/photostream/

## Personas Design Method











## **Cyber Security Dashboard**

- location view
- temporal views
- attribute bullet charts
- record details
- selection overview





## **Nested Model**



#### Purpose of the Nested Model

- capture design decisions
  - what is the justification behind your design?
- analyze aspects of the design process
  - broken apart into four different concerns
- validate early & often
  - avoid making ineffective solutions

#### Levels of the Nested Model



A nested model for visualization design and validation. Munzner, T., IEEE InfoVis, 2009.

#### **Domain Characterization**

details of an application domain



- group of users, target domain, their questions, & their data
  - varies wildly by domain
  - must be specific enough to continue with
- cannot just ask people what they do
  - introspection is hard!

#### **Domain Characterization**

- cyber security dashboard
  - read many papers to understand the field
    - need to communicate cyber information
  - interviewed & observed both researchers and users
  - created personas to identify target users





**Domain situation** 





#### **Data & Task Abstraction**

• the what-why, map into generalized terms



- identify tasks that users wish to perform or already do
- find data types and good model of the data
- sometimes must transform the data for a better solution
  - this can be varied and guided by the specific task

#### **Data & Task Abstraction**

- cyber security dashboard
  - for communication, analysts discover and present patterns
  - patterns are a collection of network alerts that represent some recurring or abnormal behavior
  - for patterns, must support identification and comparison
    - can be done through aggregation
    - e.g. collecting records by location on the internet
    - e.g. collecting records by day and hour







#### **Encodings & Interactions**

- the design of idioms that specify an approach
  - visual encodings
  - interactions



- ways to create and manipulate the visual representation of data
- decisions on these may be separate or intertwined
- principles of visual perception & memory can drive decisions here

#### **Encodings & Interactions**

- cyber security dashboard
  - location view novel patterns can be seen
    - Dorling cartogram
    - alerts outside of network
  - encodes quantity with size
    - and deviation from average with color
  - interaction mitigates less-ideal encoding choices (i.e. size, color)
    - some users just wanted a map
    - entices users to dig into additional detail views

BubbleNet: A Cyber Security Dashboard for Visualizing Patterns. McKenna, S., Staheli, D., Fulcher, C. and Meyer, M., CGF EuroVis, 2016.







## Algorithm

- instantiate an algorithm computationally
- inner-most level
- must efficiently handle all idioms
- factors such as computing time, memory, or exactness/uncertainty
- best to strive for a "fast enough" response / interactive frame rates



## Algorithm

cyber security dashboard



alternative encoding option: treemap instead of a map

space-filling, hierarchy (country, city)

- algorithm to spatially lay this out
  - non-trivial and could have implemented
- challenges:
  - size and small number of alerts
  - larger is not more important
  - less intuitive encoding to users







#### **Role of Evaluation**

- also known as validation
- to avoid ineffective solutions, justify ones that work
- measure success, using:
  - user feedback
  - perceptual principles
  - user metrics/adoption rates
  - algorithmic runtime/complexity



# Design Activity Framework

**U**nderstand

design requirements

**I**deate

ideas

**m**ake

prototypes

**d**eploy

visualization system

Design activity framework for visualization design. McKenna, S., Mazur, D., Agutter, J. and Meyer, M., IEEE InfoVis, 2014.

#### Purpose of the Framework

- guide the process of problem-driven work for visualization design
- connect actions we take with decisions we make

support a more flexible design process

• influenced by models in HCI & design





101 design methods: A structured approach for driving innovation in your organization. Kumar, V., 2012.

## **Design Artifacts**

- these are what we create in design
  - each has a purpose and is unique
  - can motivate creation of more artifacts



obtain artifacts through design methods

• e.g. personas and sketches









## **Design Activities**

• a design activity is collectively working towards specific artifacts

framework has four main activities

#### **U**nderstand

artifacts: design requirements

#### **m**ake

artifacts: prototypes

#### *i*deate

artifacts: ideas



artifacts: visualization system

#### **U**nderstand

artifacts: design requirements



 motivation: gather, observe, and research available information to find the needs of the user

- design requirements can be broken into:
  - opportunities
  - constraints (limitations)
  - considerations (more flexible)

#### **U**nderstand

artifacts: design requirements

cyber security dashboard





Unlocking user-centered design methods for building cyber security visualizations. McKenna, S., Staheli, D. and Meyer, M., IEEE VizSec, 2015.

- read many research papers to understand the field and different users
- observed and interviewed many users
- created personas to filter to a subset of users
- identified high-level goal of communication of cyber information







 motivation: to generate good ideas for supporting the understand artifacts

• sketches often get externalized in various forms, up to mock-ups and wireframes

 anyone can sketch! the goal is to capture an idea, not create a masterpiece or spend hours cleaning up the sketch

#### *i*deate

artifacts: ideas

- cyber security dashboard
  - sketched out various forms of the data
  - created data sketches:
    - 20 different ways to visualize the data
  - evaluated these with an analyst
  - identified most clear encoding for all users



Unlocking user-centered design methods for building cyber security visualizations. McKenna, S., Staheli, D. and Meyer, M., IEEE VizSec, 2015.







- motivation: to concretize ideas into tangible prototypes
- prototypes are "approximations of a product along some dimensions of interest"

Reflective physical prototyping through integrated design, test, and analysis. Hartmann, B., Klemmer, S.R., Bernstein, M., Abdulla, L., Burr, B., Robinson-Mosher, A. and Gee, J., ACM UIST, 2006.

- can be lower or high-fidelity prototypes, usually over time
- for visualization, often built using code and higher-fidelity



cyber security dashboard



- built first prototype using a treemap of alerts
- evaluated this treemap as an idea, leading to map view
- constructed map-based dashboard
- evaluated with users, anecdotally and in a usability study



BubbleNet: A Cyber Security Dashboard for Visualizing Patterns. McKenna, S., Staheli, D., Fulcher, C. and Meyer, M., CGF EuroVis, 2016.







- motivation: to bring a prototype into effective action in a real-world setting in order to support the target users' work and goals
- more software engineering-related decisions
- tool must be usable and fit into a user's workflow
- may have to optimize algorithms to increase interactivity and speed

# **d**eploy

artifacts: visualization system

- cyber security dashboard
  - showcased prototype to find its benefits
- Table Detechnical Report of Table Detection Repo

Cloudbreak: Answering the Challenges of Cyber Command and Control. Staheli, D., Mancuso, V.F., Leahy, M.J. and Kalke, M.M., Lincoln Laboratory Journal, 2016.

- implemented some benefits in an existing toolkit
- adoption of the simpler map-based view
- utilization of multi-view, instant interactions



## Design Worksheets

structure the design process









capture design artifacts and goals on paper

## **Capturing Design Flow**

understand ideate

make deploy

flexible; supports messiness

- two basic movement principles:
  - 1. forward movement is ordered



2. activities can be nested or conducted in parallel



### **Iterative Process**

these four levels of the nested model rarely occur in order

• real design processes are "messy" – iterative



### **Generative & Evaluative Methods**

- generative methods create artifacts
  - interview & observe
  - field study
  - sketching
- evaluative methods compare and winnow artifacts
  - justify design idioms
  - lab study
  - benchmarks / complexity analysis
- methods can be used for both purposes and across activities!

# Design Methods

### What Methods have we seen so far?

#### generative

- interviews/observations
- qualitative analysis
- personas
- data sketches
- coding

#### evaluative

- personas
- data sketches
- justify design idioms
- usability study
- anecdotal evidence



## **Parallel Prototyping**

- user study in HCI
  - graphic web design
  - serial vs parallel design: create & critique
- functional fixation
- benefits of designing in parallel
  - more clicks, more time on site
  - better ratings, more exploration
  - increased design confidence

Parallel prototyping leads to better design results, more divergence, and increased self-efficacy. Dow, S.P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D.L. and Klemmer, S.R., Design Thinking Research, 2012.













## Five-Design Sheets

- tailored to visualization design
  - in industry and classroom use
  - sketching as a way to plan



the design sheets:

#1 brainstorm solutions to a task

#2-4 different principle designs

#5 converge on design to implement

Ideas

Filter

Categorize

Combine & Refine

Question

|               | Sheet 2,3,4 |
|---------------|-------------|
| Layout        | Information |
|               | Operations  |
|               |             |
| Focus / Parti | Discussion  |
|               |             |

|               | Sheet 5     |
|---------------|-------------|
| Layout        | Information |
|               | Operations  |
|               |             |
| Focus / Parti | Detail      |
|               |             |

http://fds.design/

Sketching designs using the Five Design-Sheet methodology. Roberts, J.C., Headleand, C. and Ritsos, P.D., IEEE InfoVis, 2015.

### **VizIt Cards**



VizIt Cards: A card-based toolkit for infovis design education. He, S. and Adar, E., IEEE InfoVis, 2016.

- different cards to assist with visualization design
- types of cards
  - domain
  - inspiration
  - abstract
  - layout



Inspiration Card

- aim to help students design, compare, collaborate, apply, and synthesize
- http://vizitcards.org

# **Paper Prototyping**

 "create a paper-based simulation of an interface to test interaction with a user"

Methods to support human-centred design. Maguire, M., International Journal of Human-Computer Studies, 2001.

- received more suggestions than digital
- users requested more features to add
- hypothesis that paper prototyping stimulates creativity and interaction



Human-centered approaches in geovisualization design: Investigating multiple methods through a long-term case study. Lloyd, D. and Dykes, J., IEEE InfoVis, 2011.

# **Creativity Workshops**

- goals:
  - generate design requirements
  - promote creativity
- combined a variety of techniques:
  - wishful thinking
  - constraint removal
  - excursion
  - analogical reasoning
  - storyboarding



• measured prototypes for appropriateness, novelty, & surprise

# Final Project

### Role of Worksheets

- help you make great visualization projects!
  - make effective designs
  - capture your process and decisions
- encouraged for class use
  - contact me if you have questions or need any assistance
- will conduct a survey at the end of the class and optional interviews









#### More on the Worksheets

- more to come on these design worksheets
  - exercise in a future class
  - links to instructional sheet and the worksheets
- remember to contact me if you would like me to advise your group's project! first-come, first-serve basis
  - email: <u>sean@cs.utah.edu</u>
  - website: <a href="http://mckennapsean.com">http://mckennapsean.com</a>